Notes: Sequences (Section 4-2 INT 3)

An <u>explicit formula</u> for a sequence gives the value of any term a_n in terms of n (<u>position of the term</u>)

Example 1:

Write an explicit formula for each sequence

a. 11, 17, 23, 29,...

b. 3, 9, 27, 81,...

c. $\frac{1}{2}$, $\frac{3}{4}$, $\frac{4}{5}$,...

a. 11, 17, 23, 29,...

b. 3, 9, 27, 81,...

c. $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$,...

a. 11 + 6(1)

a. 2 | 11 + 6(1)

a. 3 | 4 | ...

a. 4 | ...

a. 3 | ...

a. 4 | ...

a. 4 | ...

a. 3 | ...

a. 3 | ...

a. 4 | ...

a. 4 | ...

a. 3 | ...

a. 4 | ...

a. 4 | ...

a. 5 | ...

a. 5 | ...

a. 6 | ...

a. 7 | ...

a. 8 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 3 | ...

a. 4 | ...

b. 3, 9, 27, 81,...

c. $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$,...

a. 1 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 3 | ...

a. 3 | ...

a. 4 | ...

a. 3 | ...

a. 4 | ...

a. 5 | ...

a. 5 | ...

a. 6 | ...

a. 6 | ...

a. 7 | ...

a. 8 | ...

a. 1 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 4 | ...

a. 5 | ...

a. 5 | ...

a. 6 | ...

a. 6 | ...

a. 7 | ...

a. 7 | ...

a. 8 | ...

a. 1 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 4 | ...

a. 5 | ...

a. 6 | ...

a. 7 | ...

a. 8 | ...

a. 1 | ...

a. 1 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 3 | ...

a. 4 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 4 | ...

a. 1 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 3 | ...

a. 4 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 4 | ...

a. 1 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 3 | ...

a. 4 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 4 | ...

a. 1 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 4 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 3 | ...

a. 4 | ...

a. 1 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 3 | ...

a. 4 | ...

a. 5 | ...

a. 5 | ...

a. 5 | ...

a. 6 | ...

a. 7 | ...

a. 1 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 3 | ...

a. 4 | ...

a. 1 | ...

a. 1 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 3 | ...

a. 4 | ...

a. 1 | ...

a. 2 | ...

a. 3 | ...

a. 1 | ..

Write the first three terms and the 12th term of each sequence. α_1 , α_2 , α_3 , α_{12}

a.
$$a_n = 3n - 5$$

 $a_1 = 3(1) - 5 = -2$
 $a_2 = 3(2) - 5 = 1$
 $a_3 = 3(3) - 5 = 4$
 $a_4 = 3(1) - 5 = 3$
 $a_5 = 3(1) - 5 = 3$

Notes, Using Recursive Formulas

An <u>explicit formula</u> uses the position of a term to give the value of that term in the sequence

A <u>recursive formula</u> uses the previous terms to get to the next term. Every recursive formula has at least two parts:

1) Starting value for a (first term)

@ recursion equation (rule using prenows terms)

Example 3: Explicit -vs- Recursive

1, 2, 3, 4, 5, 2, 4, 6, 8, 10, . . . Explicitly would be: 0n = 2n

Recursively:
$$a_1 = 2$$

$$a_{n+1} = a_n + 2$$

Explicit & Recursive Formulas Notes, Arithmetic & Geometric Sequences Notes (1962, 1832, 1848 INT 3),

Explicitly would be: $Q_{n=3}^n$

Recursively:
$$Q_1 = 3$$

 $Q_1 = 3 \cdot (Q_{n-1})$

Example 5: Write a recursive formula for the sequence

1, 2, 6, 24, ...
$$Q_1 = 1$$

-2 ·3·4 $Q_1 = 1$

Write an explicit formula for the same sequence: 0 = 1

$$0.1 = 1$$
 $0.2 = 2.1$
 $0.3 = 3.2.1$
 $0.4 = 4.3.2.1$

Example 6: Write the first four terms of each sequence.

Notes: Arithmetic and Geometric Sequences

A sequence in which the difference between any term and the term before is a constant is an **arithmetic sequence**.

A sequence in which the <u>ratio</u> of any term to the term before it is a constant is a **geometric sequence**. Constant vato: V

EX:
$$2, 4, 8, 16, \dots$$

$$r = \underbrace{any \ term}_{previous \ term} = \underbrace{an}_{an-1}$$

Example 7: Tell whether each sequence is arithmetic, geometric, or neither.

A. 27, 9, 3, 1, ... Geometric
$$r = \frac{1}{3}$$

C. 12, 9.5, 7, 4.5, ... Or thmete
$$d = -2.5$$

General Formulas for Arithmetic Sequences

Explicit Formula

$$a_n = a_1 + (n-1)d$$

$$first$$

$$fosition$$

$$ferm$$

Recursive Formula

$$a_1$$
 = value of the first term
 $a_n = a_{n-1} + d$

Example
3, 5, 7, 9, ...

$$42 + 2 + 2$$

 $42 + 2 + 2$
 $42 + 2 + 2$
 $42 + 2 + 2$
 $42 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 + 2$
 $43 +$

We can use an explicit formula to find the number of terms in a finite sequence that is arithmetic or geometric

Example 8: Tina is knitting a sweater with a repeating triangle pattern. The pattern repeat for each triangle is to knit 33 stitches, purl 29 stitches, knit 25 stitches, purl 21 stitches, and so on, ending with 1 knit stitch. How many rows are there in each triangle?

General Formulas for Geometric Sequences

Explicit Formula

Example 3, 6, 12, 24, ...
$$y = 2$$

$$(2)^{n-1}$$
Explicit

Recursive Formula

$$a_1$$
 = value of the first term $a_n = (a_{n-1})r$ constant value of the first term $a_n = (a_{n-1})r$

$$a_1 = 3$$

$$a_1 = (a_{n-1}) \cdot 2$$
recursive

Example 9: Find the ninth term of the geometric sequence

$$Q_{n} = Q_{1} \cdot r^{n-1}$$

$$Q_{q} = -2 \cdot (-3)^{q-1}$$

$$Q_{q} = -2(-3)^{8}$$

$$Q_{q} = -13122$$